您好,歡迎來到金屬加工網 登錄 | 免費注冊 | 忘記密碼
當前位置: 首頁 > 技術中心 > 應用案例 > 機器學習被成功應用到同步輻射光源上 增強光束性能

機器學習被成功應用到同步輻射光源上 增強光束性能

http://www.b2b.hc360.com 中國金屬加工網 信息來源:Author發布時間:2019年12月06日瀏覽:278

同步輻射光源是強大的設施,通過加速電子在受控光束中發射光,產生各種“顏色”或波長的光(從紅外到X射線)。像能源部勞倫斯·伯克利國家實驗室(Berkeley Lab)高級光源這樣的同步加速器,能讓科學家使用這種光以各種方式探索樣品,范圍從材料科學、生物學和化學到物理和環境科學。研究人員已經找到了升級這些機器的方法,以產生更強、更聚焦、更一致的光束,從而能夠在廣泛的樣本類型中進行新的、更復雜和詳細的研究。

機器學習被成功應用到同步輻射光源上 增強光束性能

解決一個數十年的問題

但是一些光束特性仍然表現出性能的波動,這對某些實驗提出了挑戰。其中許多同步加速器設備為數十個同時進行的實驗提供不同類型的光。并且在這些單獨的光束線上增強光束屬性的小調整可以反饋到整個設施整體光束性能中。同步加速器的設計者和操作員幾十年來一直在與各種方法搏斗,以補償這些波動中最頑固的部分。現在,伯克利實驗室和加州大學伯克利分校的一個大型研究團隊,已經成功地證明了機器學習工具如何通過調整來提高實驗光束大小的穩定性。

機器學習被成功應用到同步輻射光源上 增強光束性能

這些調整在很大程度上抵消了這些波動,如以亞微米(低于百萬分之一米)的精度將其從幾%的水平降低到0.4%,其研究成果發表在《物理評論快報》期刊上。機器學習是人工智能的一種形式,其中計算機系統分析一組數據以構建解決復雜問題的預測程序。ALS中使用的機器學習算法被稱為“神經網絡”,因為它們被設計為以一種松散地類似于人腦功能的方式識別數據中的模式。在這項研究中,研究人員將來自ALS的電子束數據(包括用于從電子束產生光磁性設備的位置)輸入神經網絡。

具有全球性影響

神經網絡識別該數據中的模式,并確定不同的器件參數如何影響電子束的寬度,機器學習算法還建議對磁鐵進行調整,以優化電子束。由于電子束的大小反映了磁鐵產生的光束,因此該算法還優化了用于研究ALS材料特性的光束。在ALS上的成功演示表明,該技術一般也可以應用于其他光源,并且將特別有利于通過升級ALS(稱為ALS-U項目)而實現的專業研究。伯克利實驗室(Berkeley Lab)下屬機構西村博史(Hiroshi Nishimura)說:這就是它的美妙之處,無論加速器是什么,無論傳統解決方案是什么,這個解決方案都可以在此之上。

機器學習被成功應用到同步輻射光源上 增強光束性能

ALS主任史蒂夫·凱文(Steve Kevan)表示:這對ALS和ALS-U來說是一個非常重要的進步。幾年來,X射線顯微鏡圖像中的偽影一直存在問題。這項研究提出了一種基于機器學習的新前饋方法,它在很大程度上解決了這個問題。ALS-U項目將把光束的窄焦點從大約100微米水平提高到10微米以下,同時也對一致、可靠的光束特性提出了更高要求。機器學習技術建立在自1993年ALS啟動以來幾十年來改進的傳統解決方案上,并且依賴于沿ALS環不斷調整磁體,實時補償各個光束線上的調整。

成功測試

今年早些時候,研究人員在ALS環周圍的兩個不同地點成功測試了該算法,ALS其他用戶進行新算法測試實驗,并要求對任何意想不到的性能問題提供反饋。ALS的博士后研究員C·內森·梅爾頓(C.Nathan Melton)說:在用戶操作方面進行了一致的測試。機器學習研究首席研究員、ALS加速器運營與開發的副手西蒙·利曼(Simon Leemann)說:對測試沒有任何負面反饋,研究團隊使用其中一條監測光束線是不斷測量加速器性能的診斷光束線,另一條是實驗正在積極運行的光束線。

具有活躍實驗的光束線(beamline 5.3.2.2)使用了一種被稱為掃描透射X射線顯微鏡(STXM)的技術,那里的科學家報告說在實驗中改善了光束性能。機器學習小組注意到,增強的光束性能也非常適合先進的X射線技術,如排版印刷,它可以將樣品的結構分解到納米級;以及X射線光子相關光譜(XPCS),這對于研究沒有均勻結構高濃度材料的快速變化非常有用。其他需要可靠、高度聚焦恒定強度光束與樣品相互作用的實驗也可以從機器學習增強中受益。

打開人工智能的“黑匣子”

隨著對樣品的小面積掃描,實驗要求變得越來越苛刻,所以必須找到新的方法來糾正這些不完美之處。光源是一直在努力解決的核心問題,以及機器學習工具所解決的問題,是在光束線源點處波動的垂直電子束尺寸。源點是光源處的電子束發射,到特定光束線實驗光的點,雖然電子束在這一點上的寬度是自然穩定,但它的高度(或垂直源大小)可以波動。這一努力克服了最初對機器學習提高加速器性能可行性的懷疑,并打開了此類工具如何產生真正效益的“黑匣子”。

這不是一個傳統上屬于加速器社區的工具,研究成功地將來自兩個不同社區的人聚集在一起,解決了一個非常棘手的問題。機器學習從根本上需要兩件事:問題需要可重現,需要大量的數據。數據顯示,當在各個光束線上進行調整時,電子束性能中出現了微小光點,并且該算法找到了一種方法來調整電子束,使其比傳統方法更好地抵消了這種影響這個問題由大約35個參數組成,這真的太復雜了,神經網絡一旦被訓練就做了什么,它能提供了一個預測,如果它根本不做任何事情來糾正它,那么機器中的源大小會發生什么情況。

在這個模型中有一個額外參數,描述了在某種類型磁鐵中所做的改變如何影響源尺寸。所以下來要做的就是選擇參數,根據這個神經網絡預測,產生研究想要創建的光束尺寸,并將其應用到機器上。算法指導的系統現在可以以每秒10次的速率進行校正,盡管每秒三次似乎足以提高這個階段的性能。機器學習團隊從能源部獲得了兩年資金,以便與SLAC國家加速器實驗室的斯坦福同步輻射光源合作,開展這個和其他機器學習項目。研究人員表示:人工智能這個流行詞似乎已經在研究界流行了很多年,不過,這一次它似乎終于變成了真實的東西。

分享到:0

免責聲明: 凡注明來源本網的所有作品,均為本網合法擁有版權或有權使用的作品,歡迎轉載,注明出處。非本網作品 均來自互聯網,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。

【我要評論】 【全部評論(共0條)】

  • 還可輸入(1000個字符)
  • *網友評論僅供其表達個人看法,并不表明中國金屬加工網同意其觀點或證實其描述
精華文章

巧改“液壓”為“電動”

近期,方大九鋼物流運輸部在確保安全的前提下,將碼頭起重機的“液壓”制動器[更多]

雄克全系列夾具應用案例精彩答疑

在上周的金粉講堂,雄克高級技術經理麻曉杰為大家分享雄克全系列夾具應用案[更多]

協作移動機器人的 5 種應用

使用協作移動機器人仍然是處理內部交通任務的一種相對較新的方式,“我能用[更多]

移動機器人部署安全指南

AMR的應用增加讓AMR的安全性空前重要自主移動機器人(AMRs)在工業物料運送自[更多]

仙知機器人|激光導航移動機器人是如何工作的?

伴隨移動機器人(AGV)產業快速發展,激光導航移動機器人以其自主、靈活、高[更多]
 
极速赛车走势图怎么看 股票分析师靠谱吗 重庆时时全天计划真假 宁夏11选5 澳洲赛车在线计划 官方 双色球怎么投注划算 上海快三投注销售金额 时时彩包胆计划重庆 pk拾计划软件手机版免费 在农村开个幼儿园赚钱吗 青海快三 keno平台 黑龙江11选五5开奖结果